Fuzzy Clustering and Regression Analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy local regression models with fuzzy clustering

The TSK model introduced by Takagi Sugeno and Kang TSK fuzzy reasoning is associated with fuzzy rules that have a special format with a func tional type consequent instead of the fuzzy consequent that normally appears in the MamdamiModel In this way the TSK approach tries to decompose the input space into subspaces and then approximate the system in each subspace by a simple linear regression m...

متن کامل

Obtaining interpretable fuzzy models from fuzzy clustering and fuzzy regression

Obtaining Interpretable Fuzzy Models from Fuzzy Clustering and Fuzzy Regression* Frank Hiippner Frank Klawonn University of Applied Sciences, Emden Department of Electrical Engineering and Computer Science Constantiaplatz 4 D-26723 Emden, Germany e-mail alias: [email protected] In this paper we develop an objective finctionbased clustering algorithm to build fizzy models of the Takagi-Sug...

متن کامل

Spatial dependence-based fuzzy regression clustering

Fuzzy clustering based regression analysis is a novel hybrid approach to capture the linear structure while considering the classification structure of the measurement. Using the concept that weights provided via the fuzzy degree of clustering, some regression models have been proposed in literature. In these models, membership values derived from clustering or some weights obtained from geomet...

متن کامل

A fuzzy approach to robust regression clustering

A new robust fuzzy regression clustering method is proposed. We estimate coefficients of a linear regression model in each unknown cluster. Our method aims to achieve robustness by trimming a fixed proportion of observations. Assignments to clusters are fuzzy: observations contribute to estimates in more than one single cluster. We describe general criteria for tuning the method. The proposed m...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Japan Society for Fuzzy Theory and Systems

سال: 1996

ISSN: 0915-647X,2432-9932

DOI: 10.3156/jfuzzy.8.3_431